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ABSTRACT

In this paper we present a reformulation of the so called structural methods for the
integration  of  multibody  dynamics.  This  reformulation  allows  one  to  overcome
some numerical issues that appear in some of the structural methods when they are
applied  to  multibody  dynamics.  It  also  allows  for  the  development  of  a
generalization of these methods, which leads to new algorithms of a higher order of
convergence.

The reformulation leads to three new families of methods, which can be classified
as explicit, conditionally explicit and implicit. All of them can be directly applied to
second  order  Ordinary  Differential  Equations  (EDOs)  and  allow  to  introduce
restrictions  directly  in  terms  of  the  function  to  integrate,  thus  not  requiring
stabilization or projection methods.

In  the  case  of  Differential  Algebraic  Equations  (DAEs)  one  can  have  stability
problems derived from the restrictions. This do not appear in the case of the explicit
and the conditionally  explicit  methods,  but  they are  still  present  in  the  implicit
methods In any case, these problems can be dealt with in the same methods that are
usually applied to Newmark.

In the case of implicit methods, the obtained formulation is of a single point scheme
and  in  the  case  of  explicit  and  conditionally  explicit  methods,  the  obtained
formulation is similar to a single point scheme, but it takes into account values from
two timesteps, although not all of them.

The methods are first formulated, afterwards, some examples are presented where
some hints on the performance of the methods can be derived.

Keywords: Structural  Integrators,  Multibody  Dynamics,  Newmark,  Central
Differences.

1 INTRODUCTION
The use of the so called structural integrators is becoming a mainstream in Multibody Dynamics
[1]–[3].  These methods allow one  to  directly  integrate  the  Differential  Algebraic  Equations
(DAEs) that appear in Multibody Dynamics and other phenomena without the need of reducing
the DAE index, although this can lead in the case of implicit methods to difficult to predict
stability issues, which can be avoided by integrating in minimal coordinates [4].

Currently the most used implicit structural integrators in multibody dynamics are the Newmark
method and the HHT method. Recently, the second order central difference method (SOCDM)
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has also  succesfully  being  introduced.  This  method is  considered  as  explicit  for  its  use  in
structural dynamics, but in the case of 3D Multibody Dynamics it becomes implicit due to the
dependency  on  the  velocity  that  appears  in  the  differential  equation.  Probably  the  biggest
drawback  of  these  methods  is  that  they  are  limited  to  order  2  convergence.  The  classical
formulation of SOCDM used in structural dynamics leads also to a cancellation problem that
reduces its precision.

In this document the authors will present a reformulation of both the Newmark and the SOCDM
methods, which allow one to overcome the problems of cancellation in the classical SOCDM
and leads to a configurable and extensible formulation of the methods. The extension of these
reformulations  leads  to  integrators  which  exhibit  higher  convergence  than  their  classical
counterpart (obviously at the cost of reduction of the stability conditions).

2 CENTRAL DIFFERENCES AND NEWMARK METHODS IN STRUCTURAL 
DYNAMICS AND MULTIBODY DYNAMICS

The most  used  methods  to  integrate  structural  dynamics  in  Finite  Element  models  are  the
Newmark method (implicit) and the Central Differences method (considered explicit) [5]. The
central differences method in structural dynamics is different from the classical Runge Kutta
Central Differences. In structural dynamics, it  employs two equations to relate velocity and
acceleration with deformation.

δ̇ (t )= x (t +Δt ) − x (t − Δt )
2 Δt

,δ̈ (t )= x (t +Δt ) −2 x ( t )+ x ( t − Δt )
Δt2 (1)

which, along with the equilibrium equation evaluated in the beginning of the timestep:

M ( t ) δ̈ (t )+C (t ) δ̇ ( t )+K (t ) δ ( t )=f (t ) (2)
conform the integrator. This integrator allow one to obtain δ (t +Δt ),  δ̇ (t ) and δ̈ (t ) from δ (t ),
δ̇ (t − Δt ) and  δ̈ (t − Δt ).  For  structural  dynamics  this  is  usually  reformulated  leading  to  a
multipoint formulation, leading to an equation in the form:

( M
( Δt )2

+
C

2 Δt )δ ( t+ Δt )=f ( t )+( − M
( Δ t )2

+
C

2 Δt )δ (t − Δt )−(K − 2 M
( Δt )2 )δ (t ) (3)

Which allows one to obtain  δ (t +Δt ) from  δ (t ) and  δ (t − Δt ).  For structural dynamics, the
method is explicit (although the method itself is not explicit, more on this later). It has second
order accuracy and is conditionally stable, which means that there is a limit on the timestep
required for the method to be stable.

The Newmark method in structural dynamics uses the equations:

δ (t +Δt )=δ ( t )+ Δt ⋅ δ̇ (t )+ ( Δt )2

2 ((1− α0 ) δ̈ ( t )+α 0 δ̈ (t+ Δt ) ) (4)

and:

δ̇ (t +Δt )= δ̇ (t )+ Δt ( (1− α1 ) δ̈ (t )+α 1 δ̈ (t+ Δt ) ) (5)

In this case, the equilibrium equation is formulated in t+ Δt :

M (t+Δt ) δ̈ (t +Δt )+C ( t+ Δt ) δ̇ ( t+ Δt )+K ( t+ Δt ) δ ( t+ Δt )=f (t+ Δt ) (6)
It is a configurable method, whose properties vary depending on the values taken for α 0 and α 1

(usually instead of α 0 and α 1, the teminology α=α1and β=α0/2). The method is second order
convergent  if  α 1=0.5 and  it  is  stable  provided  that  α 0≥ α 1 and  α1>0.5 (for  single  point
formulations).

If one is to use these methods in Multibody Dynamics, one only needs to replace deformations
by positions and introduce a proper 3D orientation system along with the restrictions that it
might require.

The use of  Newmark has  not  been uncommon in  Multibody Dynamics,  and  it  has  several



advantages over Runge Kutta formulations. It shares with R-K methods the problematic of the
stability  when  the  equations  to  integrate  are  DAEs.  This  has  traditionally  been  solved  by
introducing large values for α 0 and α 1. But this has a couple of drawbacks. First, one introduces
a considerable amount of numerical damping and, second, the convergence order is reduced.
The  last  issue  has  been  successfully  solved  by  introducing  the  HHT method,  but  it  still
introduces a considerable amount of numerical damping (although it usually increases with the
natural  frequency,  which  is  a  good  feature).  Another  possibility  is  the  use  of  a  minimal
coordinate set. This is usually performed in periods of several timesteps, but one can also take
advantage of the use of nullspaces to perform the reduction of coordinates in each timestep at a
reduced cost.

In the other hand, the use of the Central Difference Method has not been quite common. This is
probably  due  to  the  fact  that,  while  explicit  in  Structural  Dynamics,  it  is  implicit  in  3D
Multibody  Dynamics,  due  to  the  dependence  of  C on  ẋ.  This  is  the  reason  why,  in  this
document, we shall classify it as “conditionally explicit”. However, some recent experiments
with it show that it can be a good performer.

3 REFORMULATING CENTRAL DIFFERENCES
As  stated  before,  the  central  differences  method  for  structural  dynamics  has  usually  been
formulated as a multipoint method, in a similar way to ADAMS methods. This has a drawback,
namely the fact that velocities can only be obtained in a finite difference approach. This is quite
inconvenient, because it leads to heavy cancellation, thus limiting the achievable precision. It is
easy to find out that one can reformulate the method by using the equations:

x (t +Δt )=x (t )+ Δt ẋ (t )+ Δt 2

2
ẍ (t − Δt )+ Δt 2 ẍ (t ) (7)

ẋ (t )= ẋ (t − Δt )+ Δt
2

ẍ ( t − Δ t )+ Δt
2

ẍ ( t ) (8)

Using these equations along with the equilibrium equation allow one to obtain ẍ (t ), ẋ (t ) and
x (t +Δt ) from ẍ (t − Δt ), ẋ (t − Δt ) and x (t ). As one obtains ẋ (t ) in each timestep, the central 
difference expression is not required and, thus, this cancellation problem dissapears.
One can easily find a similitude with this formulation of the Central Differences method and
Newmarks method. This leads to the possibility of developing a configurable method for central
differences. By introducing a set of α 0, α 1 parameters, one can reach:

x (t +Δt )=x ( t )+ Δt ẋ (t )+ Δt 2

4 (1− α 0 ) ẍ (t − Δt )+α0
Δt2

4
ẍ (t ) (9)

ẋ (t )= ẋ ( t − Δt )+ Δt
2 (1 − α1 ) ẍ ( t − Δt )+ Δt

2
α1 ẍ (t ) (10)

Which leads to a configurable method.

4 A FAMILY OF EXPLICIT METHODS
Let us now consider Newmark equations and the new reformulation of central differences. One
could also consider using a set of equations in the form:

x (t +Δt )=x ( t )+ Δt ẋ (t )+ Δt 2

2
α 0 ẍ (t )+ Δt 2

2 (1− α 0 ) ẍ (t − Δt ) (11)

ẋ (t +Δt )= ẋ (t )+ Δt α 1 ẍ ( t )+ Δt (1 −α 1 ) ẍ ( t − Δt ) (12)

Which, along with the equilibrium equation evaluated in t, conforms an explicit integrator. It
would  allow  one  to  obtain  x (t +Δt ),  ẋ (t +Δt ) and  ẍ (t ) from  x (t ),  ẋ (t ) and  ẍ (t − Δt ).
Unfortunately, this method is unstable. But one might take into account that all equations that
lead to the here presented methods can be considered as weighted variations of a Taylor series.
In fact, if one introduces α 0=α1=1, Taylor series expressions are obtained. One might consider



increasing the amount of terms considered in the Taylor series. For example, one can use:

x (t +Δt )=x ( t )+ Δt ẋ (t )+ Δt 2

2
ẍ ( t )+ Δt3

6
α0 x⃛ (t )+ Δt3

6 (1− α 0) x⃛ (t − Δt ) (13)

ẋ (t +Δt )= ẋ ( t )+ Δt ẍ (t )+ Δt 2

2
α1 x⃛ ( t )+ Δt 2

2 (1− α1 ) x⃛ (t − Δt ) (14)

but one needs the equilibrium equation and an additional equation. Although it looks interesting 
to take a derivative on the equilibrium equation, that would lead to a complicated method and 
no advantage at all. Instead, it is better to introduce:

ẍ (t )= ẍ ( t − Δt )+ Δt α 2 x⃛ (t )+ Δt (1−α 2 ) x⃛ (t − Δt ) (15)

The method allows one to obtain x (t +Δt ), ẋ (t +Δt ), ẍ (t ) and x (3 ) ( t ) from x (t ), ẋ (t ), ẍ (t − Δt )
and  x (3 ) (t − Δt ).  In  this  case,  there  are  some  sets  of  parameters  that  render  the  method
conditionally stable. For example, the use of  α 0=5 /4,  α 1=4 /3 and  α 2=1/2.  Furthermore,
with these parameters it is third order convergent.

An even more general expression can be arranged. By using equations (16)-(19), along with the
equilibrium equation at the beginning of the timestep (20):

x (t +Δt )=∑
k=0

g−2 Δt k

k ! |dk x
dt k |

t

+ Δt g− 1

( g −1 ) ! (α 0|d (g − 1) x
dt g−1 |

t
(1 −α 0 )|d (g− 1) x

dt g−1 |
t − Δt

) (16)

ẋ (t +Δt )=∑
k=1

g −2 Δt k− 1

(k −1 ) !|dk x
dt k |

t

+ Δt g−2

(g − 2 )! (α1|d (g − 1) x
dt g−1 |

t
(1− α1 )|d (g− 1) x

dt g −1 |
t − Δt

) (17)

ẍ (t )=∑
k=2

g−2 Δt k− 2

(k −2 ) !|dk x
dt k |

t − Δ t

+ Δt g−3

( g −3 ) ! ((1 −α 2 )|d (g− 1) x
dt g −1 |

t − Δ t

+α2|d (g− 1) x
dt g−1 |

t
) (18)

…

|dg− 2 x
dt g −2 |

t

=|dg −2 x
dt g − 2 |

t − Δt

+Δt ((1 −α g − 2 )|d g −1 x
dt g − 1 |

t − Δt

+α g −2|dg−1 x
dt g− 1 |

t) (19)

ẍ( t)=f ( x(t ) , ẋ(t ), t) (20)
One  reaches  a  general  g-degree  method  which  can  be  considered  as  a  family  of  explicit
methods. We use the term degree to refer to the amount of derivatives to be taken into account
in the process (including the function itself).

5 A FAMILY OF CONDITIONALLY EXPLICIT METHODS
We now go back to the central difference method. By applying the same considerations exposed
for  explicit  methods,  one can consider  using  equations  (21)-(24)along with the  equilibrium
equation at the beginning of the timestep (25) to conform a family of conditionally explicit
methods:

x (t +Δt )=∑
k=0

g−2 Δt k

k ! |dk x
dt k |

t

+ Δt g− 1

( g −1 ) ! ((1− α0 )|dg − 1 x
dt g−1 |

(t − Δ t )

+α 0|d g −1 x
dt g −1 |

t) (21)

ẋ (t )=∑
k=1

g −2 Δt k− 1

(k −1 ) !|dk x
dt k |

t − Δ t

+ Δt g−2

(g − 2 )! ( (1− α 1)|d g−1 x
dt g−1 |

(t − Δt )

+α 1|d g −1 x
dt g − 1 |

t) (22)

ẍ (t )=∑
k=2

g −2 Δt k− 2

(k −2 ) !|dk x
dt k |

t − Δ t

+ Δt g −3

( g −3 ) ! ((1 −α 2 )|dg −1 x
dt g − 1 |

( t − Δ t )

+α2|dg−1 x
dt g− 1 |

t) (23)

…



|dg − 2 x
dt g −2 |

t

=|dg −2 x
dt g − 2 |

t − Δt

+Δt ((1−α g − 2 )|d g−1 x
dt g− 1 |

(t − Δ t )

+αg − 2|d g−1 x
dt g− 1 |

t) (24)

ẍ( t)=f ( x(t ) , ẋ(t ), t) (25)
Until now, we have found conditionally stable configurations of the method up until 5 th degree.
We have introduced the terminology “conditionally explicit methods” because these methods
are implicit in nature, but, if (25) is linear in  ẋ, it can be expressed in terms of, for example,
acceleration by using (22) and, thus, it can be removed from the equation, thus leading to a
explicit integrator.

6 A FAMILY OF IMPLICIT METHODS
Obviously, one can also extend Newmark method. By using the equations (26)-(29) along with
the  equilibrium equation  (30)  (this  time evaluated  at  the  end of  the  timestep),  a  family  of
implicit methods is conformed:

x (t +Δt )=∑
k=0

g−2 Δt k

k ! |dk x
dt k |

t

+ Δt g− 1

( g −1 ) ! (α 0|d (g − 1) x
dt g −1 |

t+Δt

+ (1− α 0 )|d ( g−1 ) x
dt g −1 |

t
) (26)

ẋ (t +Δt )=∑
k=1

g−2 Δt k− 1

(k −1 ) !|dk x
dt k |

t

+ Δt g −2

(g − 2 )! (α1|d (g− 1) x
dt g−1 |

t+Δt

+(1 −α 1 )|d ( g−1 ) x
dt g−1 |

t
) (27)

ẍ (t +Δt )=∑
k=2

g−2 Δt k− 2

(k −2 ) !|dk x
dt k |

t

+ Δt g−3

(g − 3 ) ! ((1− α 2 )|d ( g−1 ) x
dt g−1 |

t

+α 2|d ( g −1 ) x
dt g −1 |

t+Δ t
) (28)

…

|dg− 2 x
dt g −2 |

t+Δ t

=|dg− 2 x
dt g −2 |

t

+Δt ((1− α g− 2 )|dg−1 x
dt g − 1 |

t

+α g−2|dg −1 x
dt g− 1 |

t+Δ t) (29)

ẍ( t+Δ t)=f (x (t +Δ t) , ẋ(t +Δ t ) , t+Δ t ) (30)

7 GENERAL CONSIDERATIONS
A drawback of these methods is that they require the initial values at up to the g−1 derivative.
In some cases (see the pendulum example), analytic derivatives can be obtained. Another option
is  to  obtain the  derivatives  in  a  finite  differences  approximation.  Finally,  one can  start  the
algorithm taking those values as zero. This will harm precision, but in some cases that is not a
major setback. In any case, one could probably start the algorithm with a very small timestep
and afterwards increase it (this has not been tested by the authors yet).

A higher degree will usually mean better convergence, but will not increase the required amount
of function evaluations. This is a great advantage for these methods, because in most problems,
the bottleneck is the evaluation of the function to integrate. Obviously, in implicit methods the
evaluation  is  usually  performed  iteratively,  so  convergence  will  play  a  major  role  in
computational cost, but in explicit methods or in conditionally explicit methods in situations
where they are explicit, this should be of a great advantage, because the integrator equations are
simple vector operations (Level 1 BLAS).

The introduction of  restrictions  in  Differential  Algebraic  Equations  (DAEs)  can be directly
performed to the system of equations, although this does not alleviate by itself the stability
issues that might appear in DAEs (see [6], among others).

8 EXAMPLES. ODEs
We have intentionally left the implicit methods out of these tests. This is due to the fact that the
strong point of implicit methods are to solve stiff problems and, thus, it is not reasonable to test
their efficiency against explicit methods in non stiff problems.



The  computer  used  for  the  tests  is  a  XeonE5645@2.4GHz.  Times  have  been  measures  as
averaged for 10 runs.

To check the efficiency of  the  methods,  we have chosen the first  example from IFTOMM
Multibody benchmark. It is a simple pendulum of puntual mass 1 kg and a massless rod, 1m
lenght. In this problem, one needs to take 10 seconds of simulation keeping the energy drift
below 5e-5J. We refer the reader to the IFTOMM Multibody Benchmark for a description of the
problem. An issue with the presented solutions in the benchmark is that they are solved using
general purpose programs, which require restrictions to operate. An exception is the Opensim
solution which uses a general purpose program, but it uses relative coordinates which, in this
case, is identical to use minimal coordinates. But, in any case, it is a general purpose program,
and thus, it has some additional work to be done. Thus, in order to be able to compare to a
similar solver, we have included an RK4 solution, which should be quite competitive. The tested
methods are both of 5th degree. One is explicit and the other conditionally explicit. Higher order
derivatives for initial conditions in this case have been obtained with analytic expressions. We
have chosen two solutions. The one asked in the problem and a high precision solution where
the energy drift is limited to 5e-11 J. Results are presented in table 1.

Table 1. Performance in the tests. Planar simple pendulum

Normal precision (max error: 5e-5J) High Precision (max error: 5e-11J)

Method Time Timestep Error Time Timestep Error

RK4 4.64431E-05 3.63e-2 4.98566e-05 7.20875E-04 1.81e-3 4.98632e-11

E5D 7.23016E-05 1.3e-2 4.93116e-05 2.15565E-03 4.33e-4 4.98037e-11

CE5D 3.6809e-05 2.49e-2 4.96226e-05 8.40650E-04 9.3e-4 4.98366e-11
Obviously all those ODE implementations outperform with a generous margin the results in the
IFTOMM multibody benchmark, which requires 2.5 secs for the required solution and 0.637
secs for a result with a precision of 4e-11. But the real interest resides in the comparison of the
explicit  and  conditionally  explicit  methods.  The  conditionally  explicit  algorithm  (CE5D)
outperforms RK4 by a small margin in normal precision and is outperformed in high precision.
The explicit algorithm keeps the pace in normal precision and lags a bit in high precision, but
not  for a  large margin.  One should take into account that,  in  this  case,  due to  the  lack of
gyroscopic effects, the conditionally explicit algorithm becomes explicit.

The  next  example  is  a  3D spinning  top  example.  The  spinning  top  starts  with  an  angular
velocity  of  4 π rad /s along its  axis  and  an  inclination  with  respect  to  the  vertical  axis  of
π /6 rad. Total mass of the spinning top is 0.02 Kg and the moments of inertia respect to the
principal  inertia axix are  of values  0,  0and  2e-4 kgm2.  The distance from the pivot  of  the
spinning top and the center of gravity is of 0.05 m. Total simulation time is of 10 s. Gravity is
considered  9.81 m /s2. The target is to perform the simulation keeping the energy drift below
1e-8 J .

ẍ( t+Δ t)=f (x (t +Δ t) , ẋ(t +Δ t) , t+Δ t)
Figure 1. Spinning top. Problem description and movement of the center of gravity in the
xy plane (units are meters).



This problem includes gyroscopic effects, but it is also a problem where energy is conservative.
Thus,  here  the  conditionally  explicit  method  behaves  as  implicit  (it  still  requires  less
computational cost in each iteration than a common implicit method such as Newmark). Results
are  shown in  table  2.  In  this  case  higher  order  derivatives  of  initial  conditions  have  been
obtained numerically.

The conditionally explicit method pays the price of becoming implicit. In this problem the here
presented explicit method takes the lead with a small margin with respect to the RK4 method.

Table 2. Performance in the tests. Spinning top

Method Time Timestep Error

RK4 1.89218E-02 4e-3 9.12642e-09

E5D 1.57005E-02 1.4e-3 7.54016e-09

CE5D 8.13729E-02 1.2e-3 8.02416e-09

9 A DAE EXAMPLE
The real advantage of the structural methods rely on the application to DAEs. The fact that the
restrictions can be directly applied to the problem leads to a very good performance of them.
When  compared  to  projection  methods  [7],  restrictions  are  applied  in  all  the  function
evaluations, and not only on the final result, thus improving convergence. When compared to
Baumgarte [8], they allow for a more simple approach, without the need to tune parameters. We
shall now show the results of the planar simple pendulum problem using a DAE formulation,
solved using RK4 with projections and the conditionally explicit method. Results can be seen in
table 2.

The conditionally explicit method is able to solve the problem quite faster than the RK4 to a
similar precision. The effect of the unrestricted evaluations can be seen in the required timestep,
which is in the conditionally explicit method even larger than the required in RK4. Here one
must  take  into  account  that  RK4 requires  4  evaluations  by  timestep  and  the  conditionally
explicit method only one. The results for the higher precision requirement are even better for the
conditionally  explicit  method,  which  requires  about  four  times  less  time  than  RK4.  An
important  fact  to  take  into  account  is  that  in  this  case  higher  order  derivatives  of  initial
conditions have all been set to 0.

Table 2. Performance in the tests. Simple pendulum, DAE formulation

Normal precision High precision

Method Time Timestep Error Time Timestep Error

RK4 7.12920E-03 1.08e-2 4.83552e-05  2.2292E-01 3.44e-4 5.0326e-11

CE5D 2.79836E-03 1.24e-2 4.84126e-05 5.34952E-02 4.8e-4 4.95497e-11

10 CONCLUSIONS AND FUTURE WORK
Several alternative approaches for the integration of multibody dynamics have been presented.
These methods seem to be able to deliver a performance comparable to that of Runge-Kutta
methods, although still these are preliminary conclusions and a lot of testing has to be put on
them. They have the drawback that they require initial  conditions not only for position and
velocity,  but  also  for  higher  derivatives.  This  can  be  solved  by  a  finite  differences
approximation. The great advantage of these methods is that they do not need to increase the
amount  of  function  evaluations  to  increase  convergence,  as  happens  with  some  multistep
methods. This is a great feature, because not only should keep computational cost low, but also
should eliminate the need to perform more evaluations in event driven simulations, when an



event is triggered and leads to the need of a timestep change. It also should reduce overhead in
variable timestep methods. Another feature of interest is that in Differential Algebraic Equations
(DAEs) the restrictions can be added to the equilibrium equation and no need of projection
methods  or  Baumgarte  stabilization  is  required.  Furthermore,  in  DAEs  they  seem  to
considerably reduce the cost.  A couple  of examples have also been presented.  Future work
includes  further  experimentation,  stability  and  convergence  analysis  and  a  proper
implementation for large problems.
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